docker与tensorflow结合使用

最近这段时间一直在学习docker的使用,以及如何在docker中使用tensorflow.今天就把在docker中如何使用tensorflow记录一下.

docker安装

我是把docker安装在centos 7.4操作系统上面,在vmware中装的centos,vmware中安装centos很简单.具体的网络配置可以参考vmware nat配置.docker安装很简单,找到docker官网,直接按照上面的步骤安装即可.运行docker version查看版本如下

因为docker 采用的是客户端/服务端的结构,所以这里可以看到client以及server,它们分别都有版本号.

tensorflow

在docker中运行tensorflow的第一步就是要找到自己需要的镜像,我们可以去docker hub找到自己需要的tensorflow镜像.tensorflow的镜像主要分两类,一种是在CPU上面跑的,还有一种是在GPU上面跑的,如果需要GPU的,那么还需要安装nvidia-docker.这里我使用的是CPU版本的.当然我们还需要选择具体的tensorflow版本.这里我拉取的命令如下:

1
docker pull tensorflow/tensorflow:1.9.0-devel-py3

拉取成功之后,运行docker images可以看到有tensorflow镜像.

tensorflow在docker中使用

1
docker run -it -p 8888:8888 --name tf-1.9 tensorflow/tensorflow:1.9.0-devel-py3

运行上面的命令,在容器中启动镜像.-p表示指定端口映射,即将本机的8888端口映射到容器的8888端口.--name用来指定容器的名字为tf-1.9.因为这里采用的镜像是devel模式的,所以默认不启动jupyter.如果想使用默认启动jupyter的镜像,那么直接拉取不带devel的镜像就可以.即拉取最近的镜像docker pull tensorflow/tensorflow
启动之后,我们就进入了容器,ls / 查看容器根目录内容,可以看到有run_jupyter.sh文件.运行此文件,即在根目录下执行./run_jupyter.sh --allow-root,--allow-root参数是因为jupyter启动不推荐使用root,这里是主动允许使用root.然后在浏览器中就可以访问jupyter的内容了.

创建自己的镜像

上面仅仅是跑了一个什么都没有的镜像,如果我们需要在镜像里面跑我们的深度学习程序怎么办呢?这首先做的第一步就是要制作我们自己的镜像.这里我们跑一个简单的mnist数据集,程序可以直接去tensorflow上面找一个例子程序.这里我的程序如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Simple, end-to-end, LeNet-5-like convolutional MNIST model example.

This should achieve a test error of 0.7%. Please keep this model as simple and
linear as possible, it is meant as a tutorial for simple convolutional models.
Run with --self_test on the command line to execute a short self-test.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import gzip
import os
import sys
import time
import logging

import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf

# CVDF mirror of http://yann.lecun.com/exdb/mnist/
# 如果WORK_DIRECTORY中没有需要的数据,则从此地址下载数据
SOURCE_URL = 'https://storage.googleapis.com/cvdf-datasets/mnist/'
# 训练数据位置
# WORK_DIRECTORY = 'data'
WORK_DIRECTORY = './MNIST-data'
IMAGE_SIZE = 28
NUM_CHANNELS = 1
PIXEL_DEPTH = 255
NUM_LABELS = 10
VALIDATION_SIZE = 5000 # Size of the validation set.
SEED = 66478 # Set to None for random seed.
BATCH_SIZE = 64
NUM_EPOCHS = 10
EVAL_BATCH_SIZE = 64
EVAL_FREQUENCY = 100 # Number of steps between evaluations.

FLAGS = None

# 打印信息设置
# logging.basicConfig(format='%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s',
# level=logging.DEBUG)
logging.basicConfig(level=logging.DEBUG, # 控制台打印的日志级别
filename='cnn_mnist.log',
filemode='a', # 模式,有w和a,w就是写模式,每次都会重新写日志,覆盖之前的日志
# a是追加模式,默认如果不写的话,就是追加模式
format=
'%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s'
# 日志格式
)


def data_type():
"""Return the type of the activations, weights, and placeholder variables."""
if FLAGS.use_fp16:
return tf.float16
else:
return tf.float32


def maybe_download(filename):
"""Download the data from Yann's website, unless it's already here."""
if not tf.gfile.Exists(WORK_DIRECTORY):
tf.gfile.MakeDirs(WORK_DIRECTORY)
filepath = os.path.join(WORK_DIRECTORY, filename)
if not tf.gfile.Exists(filepath):
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
with tf.gfile.GFile(filepath) as f:
size = f.size()
print('Successfully downloaded', filename, size, 'bytes.')
return filepath


def extract_data(filename, num_images):
"""Extract the images into a 4D tensor [image index, y, x, channels].

Values are rescaled from [0, 255] down to [-0.5, 0.5].
"""
logging.info('Extracting' + filename)
print('Extracting', filename)
with gzip.open(filename) as bytestream:
bytestream.read(16)
buf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images * NUM_CHANNELS)
data = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.float32)
data = (data - (PIXEL_DEPTH / 2.0)) / PIXEL_DEPTH
data = data.reshape(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS)
return data


def extract_labels(filename, num_images):
"""Extract the labels into a vector of int64 label IDs."""
logging.info('Extracting' + filename)
print('Extracting', filename)
with gzip.open(filename) as bytestream:
bytestream.read(8)
buf = bytestream.read(1 * num_images)
labels = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.int64)
return labels


def fake_data(num_images):
"""Generate a fake dataset that matches the dimensions of MNIST."""
data = numpy.ndarray(
shape=(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS),
dtype=numpy.float32)
labels = numpy.zeros(shape=(num_images,), dtype=numpy.int64)
for image in xrange(num_images):
label = image % 2
data[image, :, :, 0] = label - 0.5
labels[image] = label
return data, labels


def error_rate(predictions, labels):
"""Return the error rate based on dense predictions and sparse labels."""
return 100.0 - (
100.0 *
numpy.sum(numpy.argmax(predictions, 1) == labels) /
predictions.shape[0])


def main(_):
if FLAGS.self_test:
logging.info('Running self-test.')
print('Running self-test.')
train_data, train_labels = fake_data(256)
validation_data, validation_labels = fake_data(EVAL_BATCH_SIZE)
test_data, test_labels = fake_data(EVAL_BATCH_SIZE)
num_epochs = 1
else:
# Get the data.
train_data_filename = maybe_download('train-images-idx3-ubyte.gz')
train_labels_filename = maybe_download('train-labels-idx1-ubyte.gz')
test_data_filename = maybe_download('t10k-images-idx3-ubyte.gz')
test_labels_filename = maybe_download('t10k-labels-idx1-ubyte.gz')

# Extract it into numpy arrays.
train_data = extract_data(train_data_filename, 60000)
train_labels = extract_labels(train_labels_filename, 60000)
test_data = extract_data(test_data_filename, 10000)
test_labels = extract_labels(test_labels_filename, 10000)

# Generate a validation set.
validation_data = train_data[:VALIDATION_SIZE, ...]
validation_labels = train_labels[:VALIDATION_SIZE]
train_data = train_data[VALIDATION_SIZE:, ...]
train_labels = train_labels[VALIDATION_SIZE:]
num_epochs = NUM_EPOCHS
train_size = train_labels.shape[0]

# This is where training samples and labels are fed to the graph.
# These placeholder nodes will be fed a batch of training data at each
# training step using the {feed_dict} argument to the Run() call below.
train_data_node = tf.placeholder(
data_type(),
shape=(BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
train_labels_node = tf.placeholder(tf.int64, shape=(BATCH_SIZE,))
eval_data = tf.placeholder(
data_type(),
shape=(EVAL_BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))

# The variables below hold all the trainable weights. They are passed an
# initial value which will be assigned when we call:
# {tf.global_variables_initializer().run()}
conv1_weights = tf.Variable(
tf.truncated_normal([5, 5, NUM_CHANNELS, 32], # 5x5 filter, depth 32.
stddev=0.1,
seed=SEED, dtype=data_type()))
conv1_biases = tf.Variable(tf.zeros([32], dtype=data_type()))
conv2_weights = tf.Variable(tf.truncated_normal(
[5, 5, 32, 64], stddev=0.1,
seed=SEED, dtype=data_type()))
conv2_biases = tf.Variable(tf.constant(0.1, shape=[64], dtype=data_type()))
fc1_weights = tf.Variable( # fully connected, depth 512.
tf.truncated_normal([IMAGE_SIZE // 4 * IMAGE_SIZE // 4 * 64, 512],
stddev=0.1,
seed=SEED,
dtype=data_type()))
fc1_biases = tf.Variable(tf.constant(0.1, shape=[512], dtype=data_type()))
fc2_weights = tf.Variable(tf.truncated_normal([512, NUM_LABELS],
stddev=0.1,
seed=SEED,
dtype=data_type()))
fc2_biases = tf.Variable(tf.constant(
0.1, shape=[NUM_LABELS], dtype=data_type()))

# We will replicate the model structure for the training subgraph, as well
# as the evaluation subgraphs, while sharing the trainable parameters.
def model(data, train=False):
"""The Model definition."""
# 2D convolution, with 'SAME' padding (i.e. the output feature map has
# the same size as the input). Note that {strides} is a 4D array whose
# shape matches the data layout: [image index, y, x, depth].
conv = tf.nn.conv2d(data,
conv1_weights,
strides=[1, 1, 1, 1],
padding='SAME')
# Bias and rectified linear non-linearity.
relu = tf.nn.relu(tf.nn.bias_add(conv, conv1_biases))
# Max pooling. The kernel size spec {ksize} also follows the layout of
# the data. Here we have a pooling window of 2, and a stride of 2.
pool = tf.nn.max_pool(relu,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
conv = tf.nn.conv2d(pool,
conv2_weights,
strides=[1, 1, 1, 1],
padding='SAME')
relu = tf.nn.relu(tf.nn.bias_add(conv, conv2_biases))
pool = tf.nn.max_pool(relu,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
# Reshape the feature map cuboid into a 2D matrix to feed it to the
# fully connected layers.
pool_shape = pool.get_shape().as_list()
reshape = tf.reshape(
pool,
[pool_shape[0], pool_shape[1] * pool_shape[2] * pool_shape[3]])
# Fully connected layer. Note that the '+' operation automatically
# broadcasts the biases.
hidden = tf.nn.relu(tf.matmul(reshape, fc1_weights) + fc1_biases)
# Add a 50% dropout during training only. Dropout also scales
# activations such that no rescaling is needed at evaluation time.
if train:
hidden = tf.nn.dropout(hidden, 0.5, seed=SEED)
return tf.matmul(hidden, fc2_weights) + fc2_biases

# Training computation: logits + cross-entropy loss.
logits = model(train_data_node, True)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=train_labels_node, logits=logits))

# L2 regularization for the fully connected parameters.
regularizers = (tf.nn.l2_loss(fc1_weights) + tf.nn.l2_loss(fc1_biases) +
tf.nn.l2_loss(fc2_weights) + tf.nn.l2_loss(fc2_biases))
# Add the regularization term to the loss.
loss += 5e-4 * regularizers

# Optimizer: set up a variable that's incremented once per batch and
# controls the learning rate decay.
batch = tf.Variable(0, dtype=data_type())
# Decay once per epoch, using an exponential schedule starting at 0.01.
learning_rate = tf.train.exponential_decay(
0.01, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
train_size, # Decay step.
0.95, # Decay rate.
staircase=True)
# Use simple momentum for the optimization.
optimizer = tf.train.MomentumOptimizer(learning_rate,
0.9).minimize(loss,
global_step=batch)

# Predictions for the current training minibatch.
train_prediction = tf.nn.softmax(logits)

# Predictions for the test and validation, which we'll compute less often.
eval_prediction = tf.nn.softmax(model(eval_data))

# Small utility function to evaluate a dataset by feeding batches of data to
# {eval_data} and pulling the results from {eval_predictions}.
# Saves memory and enables this to run on smaller GPUs.
def eval_in_batches(data, sess):
"""Get all predictions for a dataset by running it in small batches."""
size = data.shape[0]
if size < EVAL_BATCH_SIZE:
logging.error("batch size for evals larger than dataset: %d" % size)
raise ValueError("batch size for evals larger than dataset: %d" % size)
predictions = numpy.ndarray(shape=(size, NUM_LABELS), dtype=numpy.float32)
for begin in xrange(0, size, EVAL_BATCH_SIZE):
end = begin + EVAL_BATCH_SIZE
if end <= size:
predictions[begin:end, :] = sess.run(
eval_prediction,
feed_dict={eval_data: data[begin:end, ...]})
else:
batch_predictions = sess.run(
eval_prediction,
feed_dict={eval_data: data[-EVAL_BATCH_SIZE:, ...]})
predictions[begin:, :] = batch_predictions[begin - size:, :]
return predictions

# Create a local session to run the training.
start_time = time.time()
with tf.Session() as sess:
# Run all the initializers to prepare the trainable parameters.
tf.global_variables_initializer().run()
logging.info('Initialized!')
print('Initialized!')
# Loop through training steps.
for step in xrange(int(num_epochs * train_size) // BATCH_SIZE):
# Compute the offset of the current minibatch in the data.
# Note that we could use better randomization across epochs.
offset = (step * BATCH_SIZE) % (train_size - BATCH_SIZE)
batch_data = train_data[offset:(offset + BATCH_SIZE), ...]
batch_labels = train_labels[offset:(offset + BATCH_SIZE)]
# This dictionary maps the batch data (as a numpy array) to the
# node in the graph it should be fed to.
feed_dict = {train_data_node: batch_data,
train_labels_node: batch_labels}
# Run the optimizer to update weights.
sess.run(optimizer, feed_dict=feed_dict)
# print some extra information once reach the evaluation frequency
if step % EVAL_FREQUENCY == 0:
# fetch some extra nodes' data
l, lr, predictions = sess.run([loss, learning_rate, train_prediction],
feed_dict=feed_dict)
elapsed_time = time.time() - start_time
start_time = time.time()
logging.info('Step %d (epoch %.2f), %.1f ms' %(step, float(step) * BATCH_SIZE / train_size, 1000 * elapsed_time / EVAL_FREQUENCY))
print('Step %d (epoch %.2f), %.1f ms' %
(step, float(step) * BATCH_SIZE / train_size,
1000 * elapsed_time / EVAL_FREQUENCY))
logging.info('Minibatch loss: %.3f, learning rate: %.6f' % (l, lr))
print('Minibatch loss: %.3f, learning rate: %.6f' % (l, lr))
logging.info('Minibatch error: %.1f%%' % error_rate(predictions, batch_labels))
print('Minibatch error: %.1f%%' % error_rate(predictions, batch_labels))
logging.info('Validation error: %.1f%%' % error_rate(eval_in_batches(validation_data, sess), validation_labels))
print('Validation error: %.1f%%' % error_rate(
eval_in_batches(validation_data, sess), validation_labels))
sys.stdout.flush()
# Finally print the result!
test_error = error_rate(eval_in_batches(test_data, sess), test_labels)
logging.info('Test error: %.1f%%' % test_error)
print('Test error: %.1f%%' % test_error)
if FLAGS.self_test:
logging.info('test_error' + test_error)
print('test_error', test_error)
assert test_error == 0.0, 'expected 0.0 test_error, got %.2f' % (
test_error,)


if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--use_fp16',
default=False,
help='Use half floats instead of full floats if True.',
action='store_true')
parser.add_argument(
'--self_test',
default=False,
action='store_true',
help='True if running a self test.')

FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

这里我在原来的程序基础上面稍微改了下,因为我已经提前将数据下载好了,所以我让程序直接读取本机指定目录下的训练数据,同时增加了日志文件输出.这是为了在公司的容器云平台上测试获取容器输出文件

编写Dockerfile

我们可以在我们的用户目录下,创建一个空的文件夹,将mnist数据集以及程序文件都拷贝进这个文件夹下.其实数据集应该是放在数据卷中,但是这里为了方便,我直接将训练数据打进了镜像中.然后创建Dockerfile,文件内容如下

1
2
3
4
5
FROM tensorflow/tensorflow:1.9.0-devel-py3

COPY . /home/ll
WORKDIR /home/ll
CMD ['python', 'convolutional.py']

即Dockerfile文件中最后一行表示容器启动的运行的命令

build镜像

1
docker build -t tf:1.9 .

-t参数指定镜像跟tag,最后的.指定了镜像中的上下文.构建完之后使用docker images可以查看多了tf:1.9镜像

运行镜像

运行下面的命令,运行上一步构建好的镜像

1
docker run -it --name test tf:1.9

然后就能够看到训练的输出.

同时可以在看一个连接,进入容器,即运行下面命令

1
docker exec -it test /bin/bash

可以看到如下内容

即看到了cnn_mnist.log的日志输出文件